52 research outputs found

    Andermatt / Golf (canton d’Uri, Suisse). Analyses carpologiques

    Full text link

    Blumenreich. Wiedergeburt in PharaonengrÀbern. Basel, Antikenmuseum Basel und Sammlung Ludwig

    Full text link

    Origin of high Zn contents in Jurassic limestone of the Jura mountain range and the Burgundy: evidence from Zn speciation and distribution

    No full text
    Abstract In order to better understand the origin and enrichment mechanisms leading to elevated Zn concentrations in Jurassic limestone of the Jura mountain range (JMR) and the Burgundy (B), we investigated four locations of Bajocian age (JMR: Lausen-Schleifenberg, Gurnigel; B: Vergisson-Davayé, Lucy-le-Bois) and two locations of Oxfordian age (JMR: Dornach, Pichoux) for their Zn distribution and speciation. Measurements of the acid-extractable and bulk Zn contents showed that Zn is stratigraphically and spatially heterogeneously distributed, in association with permeable carbonate levels. Up to 3,580 and 207 mg/kg Zn was detected in Bajocian and Oxfordian limestone, respectively, with numerous limestone samples having Zn contents above 50 mg/kg. Using X-ray absorption near edge structure spectroscopy and micro-X-ray fluorescence spectrometry, the speciation and microscale distribution of Zn was investigated for selected limestone samples. In Bajocian limestone sphalerite and/or Zn-substituted goethite and a minor fraction of Zn-bearing carbonates were identified. In contrast, Zn-bearing carbonates (Zn-substituted calcite and hydrozincite) were accounting for most of the total Zn in Oxfordian limestone. The micro-scale distribution of Zn for Bajocian and Oxfordian limestone was however similar with localized Zn-rich zones in the limestone cement and at the rim of oolites. The stratigraphic sporadicity and microscale heterogeneity of the Zn distribution together with the Zn speciation results point to a hydrothermal origin of Zn. Occurence of Zn-goethite is probably linked to the oxidative transformation of framboidal pyrite and hydrothermal sphalerite in contact with meteoritic waters. Difference in speciation between Bajocian limestone and Oxfordian limestone may be related to differences in rock permeability Geosci (2011) 104:409-424 DOI 10.1007 and/or to various hydrothermal events. Isotopic dating of the different mineralizations will be needed to decipher differences in Zn speciation and the precise chronology of hydrothermal episodes

    which should be used for any reference to this work 1 The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation?

    No full text
    The upper Cenomanian pelagic sediments of Furlo in the northern Apennines, Italy, are characterized by a 1.5-m-thick organic-rich stratigraphic horizon called the Bonarelli Level, which represents the second major oceanic anoxic event in the Cretaceous (OAE 2). The Bonarelli Level is depleted in carbonates and consists essentially of biogenic quartz, phyllosilicates, and organic matter, with values of TOC reaching 18%. The age of the Furlo section is constrained by correlating its d 13 C curve with that of the well-dated Pueblo (USA) and Eastbourne (UK) sections. The presence of all the planktonic foraminiferid zones and details of the OAE 2 d 13 C excursion indicates a relatively continuous but reduced sedimentation rate across the Cenomanian/Turonian (C/T) boundary. Sediment and TOC mass accumulation rates have been calculated and suggest a sedimentation break in the upper Bonarelli Level. This may be an artifact of the diachronous FAD of the planktonic foraminiferid Helvetoglobotruncana helvetica and suggests that in some sections the d 13 C curve may provide more reliable age control for dating the C/T boundary. In order quantitatively to explain the carbon isotope curve and the measured TOC mass accumulation rate, a simple dynamic model of the isotope effects of organic versus inorganic carbon burial was developed. In order to verify the consistency of the model we correlated the modeled output of the Furlo section with that of the Manilva section, in southeast Spain. The modeling shows that increasing productivity only partially explains the measured d 13 C excursion and is not the only factor relevant to black shales deposition. Preservation may play a central role
    • 

    corecore